ViewTube

ViewTube
Sign inSign upSubscriptions
Filters

Upload date

Type

Duration

Sort by

Features

Reset

129 results

J
A brief overview of Kernel Ridge Regression
33:31
A brief overview of Kernel Ridge Regression

0 views

3 weeks ago

UMN CSE Data Science Initiative
20251111 Aravkin

Aleksandr Aravkin, Associate Professor of Applied Mathematics at the University of Washington, gave a presentation in the ...

1:02:36
20251111 Aravkin

11 views

2 weeks ago

DataMListic
Logistic Regression - Explained

Logistic Regression is one of the most important algorithms in machine learning for binary classification problems. This video ...

4:16
Logistic Regression - Explained

501 views

1 day ago

Center for Language & Speech Processing(CLSP), JHU
John Lafferty: Exploiting Sparsity and Structure in Parametric and Nonparametric Estimation

John Lafferty Carnegie Mellon University February 20, 2007 Center for Speech and Language Processing, Johns Hopkins ...

1:06:44
John Lafferty: Exploiting Sparsity and Structure in Parametric and Nonparametric Estimation

0 views

12 days ago

INI Seminar Room 1
Multiple Speakers | An Automated Statistician which learns Bayesian nonparametric models of time...

Title: An Automated Statistician which learns Bayesian nonparametric models of time series data Speakers: Date: 16th Jan 2014 ...

1:00:10
Multiple Speakers | An Automated Statistician which learns Bayesian nonparametric models of time...

0 views

9 days ago

Chroniques du Mental
Kernel Ridge Regression (KRR) vs SVR (Régression par Vecteurs de Support)

La régression par crête à noyau, ou Kernel Ridge Regression (KRR), est une méthode d'apprentissage automatique qui combine ...

6:18
Kernel Ridge Regression (KRR) vs SVR (Régression par Vecteurs de Support)

14 views

2 weeks ago

INI Seminar Room 1
STSW01 |Alessandro Rudi | Falkon: fast and optimal kernel method for large scale machine learning

STSW01 | Prof. Alessandro Rudi | Falkon: fast and optimal kernel method for large scale machine learning Speaker: Professor ...

37:28
STSW01 |Alessandro Rudi | Falkon: fast and optimal kernel method for large scale machine learning

0 views

9 days ago

Cohere
Chuanyang Zheng and Jiankai Sun   Understanding the Mixture of Experts with Nadaraya Watson Kernel

Learning more about MoE routing as Nadaraya–Watson regression and proposes a zero-cost FFN-style kernel-inspired router ...

56:53
Chuanyang Zheng and Jiankai Sun Understanding the Mixture of Experts with Nadaraya Watson Kernel

82 views

5 days ago

INI Seminar Room 1
Prof. Michael Jordan | Kernel-based contrast functions for sufficient dimension reduction

Title: Kernel-based contrast functions for sufficient dimension reduction Speaker: Professor Michael Jordan (University of ...

57:05
Prof. Michael Jordan | Kernel-based contrast functions for sufficient dimension reduction

2 views

9 days ago

INI Seminar Room 2
Prof. Brett Day | Peter Alexander

Title: Peter Alexander Speaker: Professor Brett Day (University of Exeter) Date: 17th Jul 2019 - 10:00 to 11:00 🗓️ Event: (EBD) ...

1:21:56
Prof. Brett Day | Peter Alexander

0 views

9 days ago

INI Seminar Room 1
| L1-regularisation, motif regression and ChIP-on-chip data analysis

Title: L1-regularisation, motif regression and ChIP-on-chip data analysis Speaker: Date: 2nd Apr 2008 - 10:00 to 11:00 🗓️ Event: ...

57:14
| L1-regularisation, motif regression and ChIP-on-chip data analysis

0 views

9 days ago

INI Seminar Room 1
Dr. Jian Qing Shi | Generalised gaussian process functional regression model

Title: Generalised gaussian process functional regression model Speaker: Dr Jian Qing Shi (Newcastle University) Date: 26th Jun ...

20:45
Dr. Jian Qing Shi | Generalised gaussian process functional regression model

0 views

9 days ago

Rebecca Willett
Lecture 16 Fall 2025: k-means Clustering

Lecture 16 from UChicago's Mathematical Foundations of Machine Learning course. k-means Clustering. Course website and ...

1:14:24
Lecture 16 Fall 2025: k-means Clustering

163 views

2 weeks ago

INI Seminar Room 1
STSW04 | Dr. Francis Bach | Statistical Optimality of Stochastic Gradient Descent on Hard Learning

STSW04 | Dr. Francis Bach | Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple ...

45:50
STSW04 | Dr. Francis Bach | Statistical Optimality of Stochastic Gradient Descent on Hard Learning

2 views

9 days ago

Code Therapy w/ René Rebe
Watch Linux Kernel Dev Fix Low-level GPU Big-Endian Driver Bugs, … AGAIN!

Watch #Linux #Kernel Dev Fix Fix #BigEndian #DRM #GPU #Driver #Bugs #Ad: You can support my work at: ...

3:28:59
Watch Linux Kernel Dev Fix Low-level GPU Big-Endian Driver Bugs, … AGAIN!

118,066 views

3 weeks ago

INI Seminar Room 1
Prof. Peter Bartlett | Benign Overfitting in Linear and Nonlinear Settings

Title: Benign Overfitting in Linear and Nonlinear Settings Speaker: Professor Peter Bartlett (University of California, Berkeley) ...

56:33
Prof. Peter Bartlett | Benign Overfitting in Linear and Nonlinear Settings

5 views

9 days ago

3mmar
week 6 (Supervised Learning ) explained WITHOUT THE LAB
7:37
week 6 (Supervised Learning ) explained WITHOUT THE LAB

0 views

2 weeks ago

INI Seminar Room 1
STSW01 | Prof. Lorenzo Rosasco | Optimal and efficient learning with random features

STSW01 | Prof. Lorenzo Rosasco | Optimal and efficient learning with random features Speaker: Professor Lorenzo Rosasco ...

50:31
STSW01 | Prof. Lorenzo Rosasco | Optimal and efficient learning with random features

0 views

9 days ago

MIT OpenCourseWare
Lecture 9: Principal Component Analysis in Finance

MIT 18.642 Topics in Mathematics with Applications in Finance, Fall 2024 Instructor: Stefan Andreev View the complete course: ...

1:23:14
Lecture 9: Principal Component Analysis in Finance

2,105 views

3 weeks ago

NVIDIA Developer
Model Financial Risk like a Quant - The case for CVaR

Learn more: ...

0:47
Model Financial Risk like a Quant - The case for CVaR

6,084 views

12 days ago