ViewTube

ViewTube
Sign inSign upSubscriptions
Filters

Upload date

Type

Duration

Sort by

Features

Reset

11,623,618 results

Derivando

1.57M subscribers

Derivando
El alucinante problema de los asientos en el avión | Mis problemas favoritos

Hay un problemita muy simpático que cuando lo conocí por primera vez me dejó bastante sorprendido, Tiene que ver con un ...

4:41
El alucinante problema de los asientos en el avión | Mis problemas favoritos

349,571 views

2 years ago

Derivando
What's the best way to pay for dinner? | GAME THEORY

When paying for a dinner with friends, what's better: each person paying for their own dish or splitting the bill equally? Let ...

4:38
What's the best way to pay for dinner? | GAME THEORY

1,454,772 views

7 years ago

Derivando
¿CUÁNTO ES CERO ELEVADO A CERO? | El vídeo que tu profe de matemáticas ¡no quiere que veas!

Hoy te traigo un vídeo que encantará a tu profesor de matemáticas. Y es que, ¿nunca te has preguntado cuánto es cero elevado ...

4:38
¿CUÁNTO ES CERO ELEVADO A CERO? | El vídeo que tu profe de matemáticas ¡no quiere que veas!

1,560,881 views

5 years ago

Derivando
¿Qué son las derivadas?

Seguro que has oído hablar de las derivadas y de las funciones o las has estudiado en algún momento. Te explicamos qué son y ...

2:50
¿Qué son las derivadas?

1,832,694 views

9 years ago

People also watched

Derivando
La primera vez que vimos los números indoarábigos en Europa: el misterio del CÓDICE VIGILANO

El Códice Vigilano o Códice Albeldense, escrito en el año 976 en Albelda de Iregua (La Rioja), contiene la primera aparición de ...

8:14
La primera vez que vimos los números indoarábigos en Europa: el misterio del CÓDICE VIGILANO

79,700 views

1 month ago

Derivando
What are fractional inheritances and why can they ruin your life?

In this video, we explore one of the most fascinating (and dangerously addictive) corners of number theory: aliquot sequences ...

6:35
What are fractional inheritances and why can they ruin your life?

48,037 views

3 weeks ago

Derivando
THE STRANGE AND TERRIBLE 2 147 483 647 The number that was about to break YouTube!!

There is a terrible and strange number, a number that has been on the verge of causing disasters and deaths, a number hidden ...

7:45
THE STRANGE AND TERRIBLE 2 147 483 647 The number that was about to break YouTube!!

1,780,678 views

4 years ago

Derivando
The Riemann Zeta Function | The Riemann Hypothesis - Part 1

The Riemman Hypothesis is one of the most important problems in mathematics that remains unsolved. This video is dedicated to ...

12:45
The Riemann Zeta Function | The Riemann Hypothesis - Part 1

811,377 views

6 years ago

Veritasium en español
¿Por qué este número está en todas partes?

Suscríbete para ver todos nuestros videos! @VeritasiumES Video en Inglés del Canal @veritasium ...

22:33
¿Por qué este número está en todas partes?

1,837,404 views

1 year ago

Derivando
¿Hay que cambiar la forma como se enseñan las matemáticas?

Se enseñan bien las matemáticas? ¿El contenido de las clases nos servirá para algo en un futuro? ¿La tecnología es una ...

9:14
¿Hay que cambiar la forma como se enseñan las matemáticas?

753,001 views

8 years ago

julioprofe
Direct integrals | Ex. 2 #julioprofe

I'll explain how to directly integrate a function involving the multiplication of binomials. At the end, I'll give you a ...

7:17
Direct integrals | Ex. 2 #julioprofe

841 views

13 hours ago

Derivando
THE 3-CUBE PROBLEM: A 60-Year-Old Solution

Have you heard of the 3-cube problem? Let's learn about its importance and why the advances made with this mathematical puzzle ...

8:28
THE 3-CUBE PROBLEM: A 60-Year-Old Solution

814,164 views

6 years ago

Derivando
The thousand queens puzzle. 1 million dollars at play!

Do you like chess? Stay tuned: If you solve this query, you could earn a million dollars! Researchers from St. Andrews ...

5:38
The thousand queens puzzle. 1 million dollars at play!

1,280,049 views

8 years ago

Veritasium en español
El Hombre Que Casi Rompe Las Matemáticas (Y A Sí Mismo...)

Suscríbete para ver todos nuestros videos! @VeritasiumES Para oportunidades de patrocinio, envíe un correo electrónico a ...

31:46
El Hombre Que Casi Rompe Las Matemáticas (Y A Sí Mismo...)

2,529,934 views

8 months ago

Derivando
Sheldon Cooper's Theorem: The number 73 is unique

In episode 73 of "The Big Bang Theory," Sheldon Cooper says his favorite number is 73, that it's a unique number, and that it ...

7:01
Sheldon Cooper's Theorem: The number 73 is unique

4,552,205 views

6 years ago

Derivando
Is 6174 the most mysterious number in the world?

The number 6174 has been called the “most mysterious of all numbers.” Is that true? Let's find out in today's video ...

4:52
Is 6174 the most mysterious number in the world?

3,347,744 views

6 years ago

Derivando Ideias

1.19K subscribers

Derivando
¿Qué es el número e?

Qué tiene el número Pi que no tenga e? Te explicamos uno de los más importantes números reales irracionales y trascendentes, ...

4:13
¿Qué es el número e?

1,866,165 views

10 years ago

Derivando
EL NÚMERO DE GRAHAM

El número de Graham aparece en el libro Guinness de los récords como el número más grande que aparece en una ...

5:47
EL NÚMERO DE GRAHAM

261,958 views

2 years ago

Derivando
What is the P versus NP problem?

In Derivando we face one of the seven millennium problems, or at least ... to explain what it is: What is the P versus NP ...

6:08
What is the P versus NP problem?

1,000,396 views

8 years ago

Derivando
You have the same birthday as me!! Coincidence? | BIRTHDAY PARADOX

Do you know two people who were born on the same day? Yes? What a coincidence! Or not...? The answer to this lies in the so ...

5:06
You have the same birthday as me!! Coincidence? | BIRTHDAY PARADOX

916,750 views

8 years ago

Derivando
Demostración de que PI es irracional ¡El vídeo que tu profe de mates no quiere que veas!

Sí, ya sabemos que Pi (π) no puede expresarse como la división de dos números enteros y que, por tanto, no es un número ...

11:39
Demostración de que PI es irracional ¡El vídeo que tu profe de mates no quiere que veas!

1,373,855 views

7 years ago

Derivando
What is the fastest line at the supermarket? | Queuing Theory

We're going to explain a theory that finds application in a wide variety of situations, such as the one that poses this ...

5:16
What is the fastest line at the supermarket? | Queuing Theory

2,034,826 views

8 years ago

Derivando
Why is LEONHARD EULER my favorite mathematician?

I know it's not right to have favorites, and just because someone is my favorite mathematician doesn't mean they're the best ...

8:33
Why is LEONHARD EULER my favorite mathematician?

705,827 views

4 years ago

Derivando
Is zero a NATURAL NUMBER?

Natural numbers are positive integers, the ones we use for counting and that are called natural numbers precisely for that ...

4:12
Is zero a NATURAL NUMBER?

346,966 views

5 years ago

Derivando
The incredible case of Évariste Galois

Despite the brevity of his work, Évariste Galois's legacy profoundly marked the history of mathematics. Want to learn more ...

5:10
The incredible case of Évariste Galois

625,972 views

9 years ago

Derivando
Why does a number divided by zero “give” infinity?

What happens when we divide something by zero? What is zero divided by zero? Let's solve this uncertainty by using the concept ...

4:45
Why does a number divided by zero “give” infinity?

3,398,623 views

8 years ago